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Abstract

Background—We evaluated cancer incidence in a cohort of polychlorinated biphenyl (PCB) 

exposed workers.

Methods—Incident cancers, identified using state registries, were compared to those in a national 

population using standardized incidence ratios. Trends in prostate cancer incidence with 

cumulative PCB exposure were evaluated using standardized rate ratios and Cox regression 

models. For selected sites, cumulative PCB exposure was compared between aggressive (fatal/

distant stage) and localized/regional cancers.

Results—We identified 3,371 invasive first primary cancer diagnoses among 21,317 eligible 

workers through 2007. Overall relative incidence was reduced. Elevations were only observed for 

respiratory cancers and among women, urinary organ cancers. Among men, prostate cancer 

incidence was reduced and not associated with cumulative PCB exposure although median 

exposures were significantly higher for aggressive compared to localized/regional prostate cancers.
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Conclusion—Previously observed associations between cumulative PCB exposure and prostate 

cancer mortality were not confirmed in this analysis; prostate cancer stage at diagnosis may 

explain the discrepancy. Am. J. Ind. Med. 60:198-207, 2017. Published 2016. This article is a U.S. 

Government work and is in the public domain in the USA.
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INTRODUCTION

Cohort mortality studies have long been a mainstay of occupational cancer epidemiology. 

However, for cancer sites with high survivability, mortality studies may not be the best way 

to investigate the relation between exposure to a carcinogen and the risk of cancer [Boyle, 

1989].

The National Institute for Occupational Safety and Health (NIOSH) polychlorinated 

biphenyl (PCB) cohort includes 24,865 capacitor-manufacturing workers exposed to PCBs 

from 1938 to 1977 at plants in Indiana, Massachusetts, and New York. For several a priori 

sites, including prostate cancer, a mortality update showed significant exposure–response 

relations between exposure and mortality [Ruder et al., 2014]. Among long-term workers 

(≥90 days of employment), prostate cancer mortality (78 deaths) was significantly associated 

with cumulative PCB exposure and was significantly elevated (25 deaths, standardized rate 

ratio [SRR] 2.11, 95% confidence interval [CI] 1.08–4.13) in the highest (≥600,000 unit-

days) relative to the lowest (<40,000 unit-days) exposure category [Ruder et al., 2014].

To determine if prostate cancer incidence in the NIOSH PCB cohort would parallel our 

cancer mortality findings, we conducted a cancer incidence study on this cohort using data 

from cancer registries in the three study states and six additional states to which substantial 

numbers of cohort members had moved. We focused on prostate cancer, based on our 

mortality study results and its high survivability (~100% 5-year survival and 99% 10-year 

survival) [American Cancer Society, 2013], but we evaluated all sites for both sexes.

METHODS

Details about cohort enumeration and mortality are presented in detail elsewhere [Ruder et 

al., 2014] and briefly here. The cohort includes everyone with complete demographic 

information employed at the study facilities for 1 day or more while PCBs were in use (n = 

24,865). To ascertain vital status, worker data were linked to the Social Security 

Administration and the National Death Index (NDI). Causes of death were obtained from 

NDI Plus for deaths in 1979 or later; for earlier deaths, death certificates were obtained from 

state vital statistics offices and coded to the International Classification of Diseases revision 

in effect at the time of death.

All workers were matched to cancer registries in New York, Massachusetts, and Indiana, 

with complete ascertainment beginning in 1976, 1982, and 1987, respectively. To minimize 

losses due to migration, we also matched workers to cancer registries in Connecticut, Rhode 
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Island, California, Texas, Florida, and North Carolina, with complete ascertainment 

beginning in 1973, 1986, 1988, 1995, 1997, and 1999, respectively. Registries provided 

matching through December 31, 2007. After excluding workers who had died (n = 1306) or 

were lost to follow-up (n = 656) before their respective cancer registries were operating, 

22,903 workers were initially eligible for the primary cancer incidence analysis (10,693 

male workers for the prostate cancer analysis). Through 2007, 7,006 (31%) of the eligible 

workers had died with 6,055 (86%) of these deaths occurring in the registry states 

(Supplemental File, Table SI).

Cancer registries provided date of diagnosis and International Classification of Diseases for 

Oncology Third Edition (ICD-O-3) codes for primary site, laterality, morphology, and stage. 

Incident cases (all primary invasive cancers and in situ bladder cancers) were classified into 

12 major and 41 minor cancer incidence groupings (Supplemental File, Table SII). 

Diagnosis dates were assigned as January 1st if only the year was known, and on the 1st of 

the month if only the month and year were known. For prostate cancer, the rate of case 

under-ascertainment by using death certificates to identify cases was estimated using 

methods in Freedman et al. [2006]. For analysis of first primary invasive cancer, we 

excluded workers diagnosed before their respective cancer registries were operating. For 

analysis of prostate cancer, we excluded men with prostate cancer diagnoses before their 

respective cancer registries were operating, but not men with other cancer diagnoses.

Historical address information was used to estimate when workers first entered and first left 

the time-dependent catchment area (hereafter “the catchment”). The catchment first 

encompassed Connecticut from 1973 to 1975. New York joined the catchment in 1976; over 

time the catchment was enlarged until for 1999–2007 it included all nine states. Available 

address information was combined to form a residence history for each worker (see 

Supplemental File, Additional details on state of residence). For a given year, workers were 

considered to be in the catchment if living in any state associated with the catchment. 

Workers thought to never have lived in the catchment were excluded. Workers leaving the 

catchment before the study end date contributed person-years at risk (PYAR) until they left. 

Although some workers may have returned to the catchment, the primary analysis (described 

below) only considered the initial risk period.

Detailed work history records included begin date, end date, department, and job title. Plant-

specific job exposure matrices were used to assign exposure scores for inhalation and dermal 

exposure to PCBs [Hopf et al., 2009, 2010, 2014]. An un-weighted average of inhalation and 

dermal exposure scores was used to estimate cumulative exposure (the product of the 

number of days in each department and job-title and the assigned score, summed over all 

jobs worked), which was expressed as unit-days or -years.

Cohort cancer rates were compared to rates in the Surveillance, Epidemiology, and End 

Results (SEER) referent population, which covers approximately 28% of the US population 

[Howlader et al., 2014] using standardized incidence ratios (SIRs) from a life-table analysis 

program (LTAS.NET) [Schubauer-Berigan et al., 2011]. In this analysis, the numerator was 

based on first primary invasive cancers among eligible cohort members. Analyses of the first 

primary invasive cancer (overall and site-specific) used SEER 1976–2009 rates adjusted for 
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cancer prevalence [Merrill et al., 2012]. SIRs were also used to compare prostate cancer 

rates among male workers to the SEER referent population; in this analysis, the first primary 

prostate cancer was considered (and other earlier cancers were ignored) and reference rates 

were based on SEER data (1976–2006) unadjusted for cancer prevalence (i.e., all prostate 

cancers were considered).

For each worker, the date risk began was the later of the date of first employment and the 

date the worker entered the catchment. The date risk ended was the earliest of the date of 

diagnosis (cases), the date last observed (workers lost to follow-up), the date of death 

(deceased workers), the date the worker left the catchment (if applicable), and the study end 

date (workers alive, cancer free, and still in the catchment on 12/31/2007). Person-time at 

risk was stratified by age and calendar year (in 5-year categories) and multiplied by gender- 

and race-specific cancer incidence rates to obtain expected numbers of cases. The SIR was 

defined as the ratio of the observed to the expected numbers of cases and 95%CIs were 

estimated under the assumption of a Poisson distribution. Race was unknown for over half of 

the cohort [Ruder et al., 2014]; White race was assumed when unknown based on plant 

locations.

The primary analysis used cancer registry data to identify cases and registry states to define 

the catchment. Sensitivity analyses for prostate cancer explored different scenarios: limiting 

the catchment to the three plant states and limiting cases to those identified using these 

registries; additionally including cases identified using death certificates from the nine 

registry states; including all risk periods (i.e., all person-time at risk in the catchment 

contributed to the denominator); assigning the earlier state to the entire gap in the residence 

history; assigning the later state to the entire gap; and excluding nine “lost and found” 

workers. Additional details of these sensitivity analyses are provided (Supplemental File, 

Sensitivity Analyses).

Prostate cancer incidence was compared by plant state (Indiana, Massachusetts, and New 

York) and by employment duration (<90 days, 90+ days) (Supplemental File, External 

analyses). Standardized rate ratios and Cox proportional hazards regression models were 

used to evaluate associations between prostate cancer incidence and cumulative PCB 

exposure (Supplemental File, Internal analyses).

Finally, we conducted a post hoc analysis comparing cumulative PCB exposure for 

aggressive prostate cancer diagnoses to indolent prostate cancer diagnoses, using the 

definition of Koutros et al. [2013] that aggressive prostate cancers were fatal (underlying 

cause prostate cancer) or distant stage at diagnosis. Lacking another metric, we applied this 

definition across cancer sites, and defined an aggressive cancer as fatal (with the underlying 

cause of death being the same cancer) or distant stage at diagnosis. Because the distribution 

of cumulative PCB exposure was highly right-skewed, we compared median exposures for 

aggressive cases to indolent cases (localized or regional stage at diagnosis) using the 

Wilcoxon two-sample test.
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This study (HSRB-08-DSHEFS-02) was approved by the NIOSH Human Subjects Review 

Board and participating state cancer registries. As a records study, it was exempted from 

informed consent requirements.

RESULTS

Among eligible workers 4,084 invasive cancer diagnoses occurred; all after the workers 

began employment. With only a few exceptions (n = 8), all diagnoses occurred after the 

workers ended employment. We excluded 121 duplicate matches and 304 later diagnoses 

among workers with multiple primary diagnoses (for 21 workers with multiple primary 

tumors on the same day, we selected the most common cancer); 33 workers diagnosed 

before their respective cancer registry began operation; 1,507 workers (53 diagnoses) with 

no time in the catchment; and 46 workers diagnosed before entering the catchment. We 

censored PYAR for 2,244 workers who left the catchment before the study end date (and 

ignored 156 subsequent diagnoses in this group).

Cancer case and non-case demographics are in Table I. For the analysis of first primary 

invasive cancer, 3,371 cases were observed among 21,317 workers contributing 427,511.2 

PYAR. Cancer incidence was significantly reduced (SIR 0.93, 95%CI 0.90–0.96) (Table II). 

Significant elevations were observed for respiratory cancers overall (SIR 1.23, 95%CI 1.14–

1.33) and urinary organ cancers among females (SIR 1.27, 95%CI 1.01–1.53).

For the prostate cancer analysis, we considered all prostate cancer matches (n = 501) 

regardless of other diagnoses. We excluded three duplicate matches and one second primary 

match; three workers with prostate cancer diagnoses before their respective cancer registry 

began operation; 776 workers (five diagnoses) with no time in the catchment; and nine 

workers with prostate cancer diagnoses before entering the catchment. We censored PYAR 

for 1,345 workers who left the catchment before the study end date (and ignored 26 

subsequent diagnoses). This analysis included 454 prostate cancer cases, whether first 

primary or not, among 9,905 workers contributing 193,960.3 PYAR. Prostate cancer 

incidence was lower than expected (SIR 0.88, 95%CI 0.80–0.97). Prostate cancer incidence 

did not vary by plant; was similar for short-term (<90 days of employment) and long-term 

workers; and did not vary with unlagged or 20-year lagged cumulative exposure 

(Supplemental File, Table SIII). Sensitivity analyses for defining the catchment, cases, and 

risk periods produced similar results (Supplemental File, Table SIV).

As of 12/31/2007, 338 prostate cancer cases were alive, five were lost to follow-up, 142 had 

died in the catchment, and 12 had died outside of the catchment. For the 142 deaths in the 

catchment, the death certificate specified prostate cancer as the underlying cause for 53 

decedents and as a contributing cause for an additional 10 decedents. Consequently, death 

certificate ascertainment did not identify 56% (79 out of 142) of the prostate cancers 

identified by the state cancer registries among cohort members who had died in one of the 

registry states by 12/31/2007.

In internal analyses, directly standardized rates of prostate cancer incidence did not increase 

with unlagged or 20-year lagged categories of cumulative exposure (Supplemental File, 
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Table SV). Similar results were observed when exposure lag periods of 10 and 30 years were 

considered and when short-term (<90 days employment) workers were excluded (data not 

shown). Risk of prostate cancer was not associated with cumulative PCB exposure in Cox 

regression models (Supplemental File, Table SVI).

The incident cancer diagnoses are described in Table III by their status as aggressive or 

indolent. Median estimated cumulative PCB exposure is summarized for aggressive and 

indolent cancer diagnoses in Table IV for 11 major categories and some minor categories of 

special interest (stomach, uterine, and brain cancer because of previously observed elevated 

mortality [Ruder et al., 2014]). Among prostate cancer cases with known exposure and 

known status, the median cumulative exposures for aggressive cancer cases was significantly 

higher compared to localized and regional cases. The median was higher, but not 

significantly, for respiratory cancers.

DISCUSSION

Cancer is a major public health problem in the United States with annual incidence of 

460.4/100,000 (1.67 million diagnoses estimated for 2014) and annual mortality of 

174.8/100,000 (585,720 deaths estimated for 2014) [Howlader et al., 2014]. In the United 

States, prostate cancer accounts for more male cancer diagnoses than lung cancer and, 

despite the high survival rate, is a leading cause of death [Brawley, 2012]. The known risk 

factors for prostate cancer are advanced age, family history, African-American race 

[Brawley, 2012], and higher latitude of residence [St-Hilaire et al., 2010]. While there are no 

well-established occupational or environmental risk factors, exposures to PCBs [Charles et 

al., 2003; Ruder et al., 2014] and pesticides [Ejaz et al., 2004; Mullins and Loeb, 2012] have 

been proposed. For several sites, including prostate cancer, our mortality update showed 

significant exposure–response relationships [Ruder et al., 2014]. For cancers with high 

survivability, incidence may be a better metric than mortality. Indeed, in our study, death 

certificates missed more than half of the prostate cancer diagnoses. Consequently, we 

analyzed incident cancers, to determine whether cancer groupings for which we had found 

excess mortality would also have elevated cancer incidence.

We expected to find elevated prostate cancer incidence in this cohort of PCB exposed 

workers because of the previously observed positive exposure–response relation with 

cumulative PCB exposure and prostate cancer mortality; however, prostate cancer incidence 

was significantly reduced in the cohort compared to the SEER population. Furthermore, 

elevations were not observed for other incident cancers with the exception of respiratory 

cancers and, among women, urinary organ cancers. We considered several possible 

explanations for this apparent discrepancy.

First, our study could not benefit from a national cancer registry, as one does not exist 

[Buchanich et al., 2009]. We identified cases using cancer registries for nine states where 

86% of deceased eligible workers had died through 2007. Cancer diagnoses outside of the 

catchment area or before the registries were operating were not available. Consequently, 

person-time for individuals outside the catchment was excluded when estimating expected 

numbers of cases. This calculation, however, relied on available residential histories, and the 
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state of residence had to be assumed for 43% of the potential PYAR. Overestimation of the 

amount of time spent in the catchment would result in underestimated SIRs.

Second, our analyses used SEER rates, which are intended to be representative of the entire 

country. However, the SEER catchment comprises only 28% of the U.S. population [NCI, 

2014]. If SEER rates actually overestimate national incidence, then SIRs would be 

underestimated. Ideally, a comparison of mean prostate cancer incidence rates inside and 

outside the SEER catchment could test this hypothesis for prostate cancer but rates for 

individual states outside the SEER catchment are unfortunately only available for more 

recent years and not for all of the years considered in our study. However, an examination of 

state-specific prostate cancer incidence rates for recent years [US Department of Health and 

Human Services et al., 2014] showed that Indiana incidence (but not Massachusetts or New 

York) was consistently below SEER incidence, so use of the SEER rates may have 

underestimated the prostate cancer SIR.

Third, our cohort is an older cohort and it is possible that members of our cohort were 

diagnosed, and subsequently died, before registries began collecting cases. Median birth 

year was 1930 (range 1896–1957) for women diagnosed with cancer and 1932 (range 1900–

1958) for men diagnosed with cancer; median birth year was 1938 (range 1890–1959) for 

cancer-free women and 1942 (range 1888–1960) for cancer-free men (Table I). Since most 

cancer registries began ascertaining cases in 1976–1999, information about nonfatal cancer 

diagnoses among the 1,306 workers who died before 1976 or the 656 workers lost to follow-

up (8% of the cohort) would not have been ascertained by us and these individuals would not 

have been included in our analysis.

Fourth, race was unknown, and White race assumed, for over half the cohort [Ruder et al., 

2014]. Thus, it is possible that rates applied were too high or too low for a subset of the 

cohort. For example, because prostate cancer incidence rates are higher for African-

American men [Brawley, 2012], if African-American rates were more appropriate for some 

of the men with unknown race, use of the higher rates would have resulted in increased 

expected incidence, but this would have resulted in an even lower prostate cancer SIR.

Fifth, for the external analyses, we used two prostate cancer incidence rate files for the 

SEER referent population [Howlader et al., 2014]. The first rate file (i) excluded second and 

later diagnosed cases from the numerator and (ii) excluded prevalent cases from the 

denominator and produced an SIR of 0.83 (Table II); the second rate file, which was only 

used for prostate cancer, (i) did not exclude second and later diagnosed cases from the 

numerator (although this is not likely to be a major issue for prostate cancer) and (ii) did not 

exclude prevalent cases from the denominator (a potentially major issue given the high 

prevalence of prostate cancer in the United States) and produced an SIR of 0.88 

(Supplemental File, Tables SIII–SV). Merrill et al. [2012] estimated corrected prostate 

cancer incidence rates to be 9.9–13.7% higher than rates that did not include these 

adjustments. Larger differences were observed at older ages, with corrected rates for White 

males 80 years or older estimated to be 20% higher than uncorrected rates [Merrill and 

Sloan, 2012]. Thus, in the second analysis it is possible that we underestimated the expected 

number of prostate cancer cases and consequently overestimated the prostate cancer SIRs, 
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but this does not explain the observed deficit or the lack of association with estimated 

exposure to PCBs.

Finally, recommendations for screening using prostate-specific antigen (PSA) testing in the 

late 1980s had an enormous impact on the numbers of diagnoses in subsequent years [Leach 

and Thompson, 2012], but adherence to screening guidelines can vary. For example, 

screening for working Americans with no cancer history (based on National Health 

Interview Survey data) varied by job status with 53% and 61% of blue- and white-collar men 

screened in 1999, respectively, and declining to 37% and 50% by 2010 [Clarke et al., 2012]. 

If the men in our cohort were less likely than other men to be screened, prostate cancer 

diagnoses would have been under ascertained in our cohort, leading to underestimated 

prostate cancer SIRs.

We did not observe positive associations between prostate cancer incidence and estimated 

cumulative PCB exposure in this cohort of PCB exposed workers. Both duration of 

employment and estimated PCB exposure in our cohort decreased with decade of first 

exposure (data not shown) so differential PSA screening rates by year could obscure an 

exposure–response association. In a post hoc analysis, we observed significantly higher 

median estimated cumulative PCB exposure for workers with aggressive prostate cancer 

diagnoses (median 700 unit-years) compared to regional/localized diagnoses (median 150 

unit-years) (Table IV; P < 0.0001). Since prostate cancer aggressiveness may be determined 

when the tumor is initially formed [Giovannucci et al., 2007; Penney et al., 2013], it is 

possible that higher exposed workers developed aggressive tumors differentially at a higher 

rate compared to lower exposed workers. However, given the number of prostate risk factors 

and the role genetic susceptibility plays, it is difficult to interpret the difference in PCB 

exposure we observed [Boyd et al., 2012].

There are limited and conflicting data on the relationship between PCBs and prostate cancer. 

In a serum concentration study Koutros et al. [2015] found no association between total 

PCBs and individual PCB congeners and metastatic prostate cancer except for PCB 

congener 44 which was inversely associated with risk. Sawada et al. [2010] found an inverse 

risk of total PCBs in plasma and advanced prostate cancer. Since the workers in our cohort 

were exposed to PCB mixtures which contained estrogenic, nonestrogenic, and 

antiandrogenic PCB congeners [Connor et al., 1997; Wolff et al., 1997; Hopf et al., 2009], 

etiologic mechanisms are likely complicated.

Based on the known association of PCBs with endocrine disruption [Bonefeld-Jorgensen et 

al., 2014; Annamalai and Namasivayam, 2015], we expected to observe similar aggressive 

versus indolent results for other cancers associated with hormone effects (i.e., breast, 

uterine, ovarian, and thyroid cancers) [Buranatrevedh and Roy, 2001; Duntas, 2015]. 

However, we did not observe higher median cumulative PCB exposures for aggressive 

breast, uterine, and ovarian cancers. For thyroid cancer, the median cumulative PCB 

exposure for aggressive cancers was an order of magnitude higher compared to local/

regional cancers but there were only two aggressive thyroid cancers. While suggestive of an 

association, this should be explored in a larger study.
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Our mortality paper [Ruder et al., 2014] did not focus on lung cancer because it was not an a 

priori outcome and we did not have smoking data on cohort members. Smoking is the most 

important risk factor for lung cancer [Recio-Vega et al., 2013]. While lung cancer mortality 

was (borderline) elevated in the full cohort (766 deaths, SMR 1.07, 95%CI, 0.99–1.15), the 

elevation disappeared when we removed the short-term (<90 days) workers (short-term 

SMR 1.34, long-term SMR 0.99). Several papers have associated serum PCB levels with 

elevated lung cancer rates in non-occupational studies, whether not adjusting [Onozuka et 

al., 2009; Li et al., 2015] or adjusting [Recio-Vega et al., 2013] for smoking status. The 

present cancer incidence study also found elevated respiratory cancer in a PCB cohort but 

additional studies with both occupational exposure and smoking data would be needed to 

confirm the association.

Our study has several significant strengths. It is the largest cohort of former capacitor 

workers exposed to PCBs and includes a detailed exposure assessment. The data available to 

construct job-exposure matrices included individual work histories, detailed job descriptions, 

and exposure measurements collected at the plants [Hopf et al., 2009, 2010, 2014]. However, 

as in other records-based studies, we had no information on family history or genetic 

susceptibility; lifestyle choices that could affect mortality (such as obesity); or previous or 

subsequent employment.

In conclusion, previously observed associations with cumulative PCB exposure and prostate 

cancer mortality were not confirmed in this analysis; however, prostate cancer stage may 

explain the apparent discrepancy. Our results may contribute to the decision-making process 

for determining which men could benefit from PSA testing. Men with aggressive prostate 

cancer had significantly higher levels of estimated cumulative PCB exposure than those with 

nonaggressive cancer. If it follows that incidence of aggressive prostate cancer is higher 

among men with high cumulative PCB exposure, then men who have been exposed to high 

levels of PCBs might benefit from PSA testing even more than men in the general 

population.
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TABLE I

Characteristics of Analyzed Workers, by Case Status, as of December 31, 2007

Characteristic

Female workers (n =11,426) Male workers (n = 9,891)

Cancer cases (n 
=1,822) No. (%)a

Other female workers 
(n = 9,604) No. (%)a

Cancer cases (n 
=1,549) No.(%)a

Other male workers (n 
= 8,342) No. (%)a

Plant

 Indiana 1138(62) 6081 (63)   588 (38) 2728 (33)

 Massachusetts   580 (32) 2829 (30)   633 (41) 3737 (45)

 New York   104 (6)   595 (6)   328 (21) 1877 (23)

Vital status as of December 31, 
2007

 Alive   724 (40) 7297 (76)   638 (41) 6141 (74)

 Dead 1087 (60) 2278 (24)   904 (58) 2165(26)

 Lost     11 (<1)     29 (<1)       7 (<1)    36 (<1)

Year of birth

 Median (range) 1930 (1896–1957) 1938 (1890–1959) 1932 (1900–1958) 1942 (1888–1960)

Year of first employment

 Median (range) 1957 (1939–1977) 1962 (1939–1977) 1959 (1939–1977) 1965 (1939–1977)

Age at first employment

 Median (range) 24.9 (15.2–58.3) 21.3(14.0–64.9) 24.5 (11.5–60.7)   22.1 (14.5–66.7)

Age at last employment

 Median (range) 30.7 (16.0–68.2) 25.2 (15.9–69.7) 29.5 (16.1–66.1)   24.6 (15.3–72.0)

Duration of employment (years)

 <90 days   543 (30) 3190 (33)   364 (23)   2273 (27)

 90 days – < 1 year   347 (19) 2179 (23)   345 (22)   2262 (27)

 1 year – < 5 years   433 (24) 2318 (24)   362 (23)   1950 (23)

 5years – < 10 years   182 (10)   794 (8)   117 (8)     801 (10)

 10+ years   317 (17) 1123 (12)   361 (23)   1056 (13)

 Mean ± standard deviation         4.7 ± 7.3         3.5 ± 6.1         5.7 ± 8.1         3.7 ± 6.1

 Median (range)   1.0 (0.0–35.1)     0.7 (0.0–35.0)     1.3 (0.0–35.9)     0.8 (0.0–37.0)

Cumulative exposure to PCBs 

(unit-years)b

 Unknownc   77 (4)   250 (3)       27 (2)       76 (1)

 Mean ± standard deviation     850 ± 2100       630±1700       1000±2300       640±1600

 Median (range) 100 (0.1–22000)     73 (0.0–26000)     160 (0.3–21000)    110 (0.0–23000)

a
Result given as n (%), unless otherwise specified. Percentages may not sum to 100 due to rounding.

b
PCBs, polychlorinated biphenyls.

c
Cumulative exposure was unknown if workers had any time in a job with unknown exposure.
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